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The technique of describing the characteristic polynomial of a graph is here 
extended to construction of the eigenvectors. Recurrence relations and path 
tracing are combined to generate eigenvector coefficients as polynomial func- 
tions of the eigenvalues. The polynomials are expressed as linear functions 
of Chebyshev polynomials in order to simplify the computational effort. 
Particular applications to the Hiickel MO theory, including heteroatom effects, 
are shown. 
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I. Introduction 

The characteristic polynomial of the general n x n matrix A, defined as 
(-1)" det (A-xI), where I is the identity matrix, may be written [1] 

(-1)" a l l - - X  a12 �9 �9 �9 a l n  

021.  a22:--x �9 �9 �9 a2n: 

I a n l  a n 2  " " " a n n - - X  

In this convention the leading term of the polynomial always has a positive sign. 
The matrix A may be represented by a directed multigraph including edge and 
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vertex weights as follows 

r 

a i i 022 
a12 

a33 

where a,  is a vertex weight and ao is the edge weight of the edge directed from 
vertex j to vertex i. Thus row i of the matrix contains the weights for edges 
directed to vertex i, while column j contains the weights for edges directed f r o m  
vertex j. In the simple Hiickel case, where a , = 0  and a~=aj~=0 or 1, the 
characteristic polynomial can be assembled by the technique of Heilbronner [2] 
using the Chebyshev polynomials [3] and their recurrence relations. Practical 
application of the method is limited to sparse matrices. 

Once the eigenvalues are obtained, the numerical values of the corresponding 
eigenvectors of A may be determined from the cofactors of a row of the charac- 
teristic matrix [4]. Certain problems which occasionally arise with this procedure, 
and methods for dealing with them, will be discussed later. It will first be shown 
that the cofactors of any element of the characteristic matrix can be expressed 
analytically by as simple a procedure as used to develop the characteristic 
polynomial. Thus, the eigenvector coefficients and any functions derived from 
them can be expressed analytically as well. The procedure will be demonstrated 
for the Hiickel MO problem, and the inclusion of heteroatoms will be shown to 
be a straightforward extension of the technique. Since the normalized eigenvectors 
correspond to the atomic orbital coefficients in each molecular orbital, they 
contain all the information required for calculable molecular properties. It is 
then possible to express other quantities of interest, particularly bond orders, in 
closed form as well. 

2. Theory 

To simplify the notation we will first refer to the diagonal elements of the 
characteristic matrix, a i i -  x, by just a,. Then we may write 

det ( A -  x I )  = e q i 2 . _ i ~ { a l i l a 2 i z .  . . a n i ~ }  

where il, i2,. �9  in take on all permutations of the values 1, 2 , . . . ,  n, and e~l~2...i ~ 
is the permutation tensor, • 1 for even or odd permutations of the column numbers 
with the row numbers in natural order [5]. Expanding in terms of the cofactors 
of elements of a row 

det ( A - x I  ) = Y~ a,~t3[ ( - - 1 ) ~ + ~  ei ,  i2.. . i~_l{ a l i t a 2 i z  . . . anin  ,}] 

where the set of row numbers 1 , 2 , . . . ,  n does not include a, and the column 
numbers i~, i2 , . . . ,  in-~ take on all permutations of the values 1, 2 , . . . ,  n not 
including/3. In terms of  the graph, since a,t3 is the weight of the edge directed 
from vertex/3 to vertex a, the cofactor in square brackets contains no other edges 
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directed either from vertex /3 or to vertex a. Separating the cofactor of  the 
diagonal element from those of the remainder of  the row 

det ( A -  x I )  = a,~o~[e6i2._i,_,{al6 a2i2 . . . ani,_,}] 

q- E aa.8[(--1)~ a2i2 . .  . ani,,-1)] 
13~a 

where c o f ( a , , )  now contains identical sets of  row and column numbers not 
including a. 

For /3  ~ a we may expand c o f ( a ~ )  by successively extracting terms from the 
determinant to leave smaller determinants which have identical sets of  row and 
column numbers. This may be written 

det ( A -  x I )  ~- a,,~[eili2...i~ . . . a , i .  1}] 

q'- ~. a,xfl[-a,~o, Eili2._i,_2{aliza2i2. . .  ani._2} [3:~a 

-b ~ a~xaxo~ei, i2...i._3{al6a2i2 . . .  a~i._3} 
h g: ot,,8 

-b" (-- 1) ~-1 Z a~3Aax~. . ,  a~o~ 
x,~,...,~5~ a,/3 

x ~ tz.....,f 
: ]. 

The cofactor of  a~e is then a linear combination of determinants which are 
successively reduced in size. The coefficients of  each determinant are strictly 
products of  off-diagonal elements of the matrix A which form a sequential set 
of  row (and column) numbers between/3 and a. The sign of each term has been 
determined by the alternating nature of  the permutations required to bring the 
row and column numbers of  the coefficients into identical order. Interchanges 
of  even or odd numbers of  column indices are odd or even permutations, 
respectively. 

We may now write the determinants in the same format as that of  the characteristic 
polynomial  by factoring appropriate powers of  -1  to match the sizes of  the 
determinants. Thus we obtain 

det ( A - x I  ) = ( - 1 ) " - '  a ~ [ ( - 1 )  "-1 ei, i2...i._, { ali,  a2,2 . . . a,,i~ ] 

+ ( - 1 )  "-x ~ a~,6[al3o,( -1)n-2e6i2. . . i , ,_2{al i la2i2. . ,  ani,_2} 

_[_ ~ n - 3  
ar ei~i2...i._3{ali, a 2 i ~ . . ,  a,io_~} 

+ 
z , ~ , . . . , ~ a , ~  

A ~ , . . . , ~  

. 
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The cofactor of the diagonal term, a~ ,  is within a multiplicative sign factor equal 
to the characteristic polynomial produced from A - x I  by eliminating row a and 
column c~. The equivalent graph is the subgraph which results from eliminating 
vertex a and all edges incident with it from the original graph. The cofactor of 
a ~  is, within the same multiplicative sign factor, equal to a linear combination 
of terms each containing the product of edge weights directed from a to /3 
multiplied by the characteristic polynomial produced from A - x I  by eliminating 
rows and columns labelled by a,/3 and any intervening indices. The equivalent 
graph is the subgraph which results from eliminating all edges directed from 
vertex/3 and to vertex a. Each term in the expansion is then equivalent to tracing 
a path from vertex a to vertex/3, taking the product of the edge weights traversed, 
and multiplying the product by the characteristic polynomial of the subgraph 
obtained by eliminating all vertices and incident edges along the traced path. 

3. Hiickel M O  

To demonstrate the procedure we begin with the adjacency matrix. All vertex 
weights are zero and all the nonzero edge weights are identically one. The 
characteristic polynomial in the variable x will be given by linear combinations 
of the Chebyshev polynomial (designated S . ( x )  in [3]) which is defined as 

L , = - L , ( x )  = ~. (_ l )mXn_Zm n rn = x , _ ( n _ l ) x , _ 2 + . .  " 
rtl=O 

where L, obeys the recurrence relation 

L ,  = x L , _ l  - L , _ 2 .  

We will also make use of the product and derivative expansions 

y 
LnLn+ i = ~ L2n+i_2rn = L2n+i-k-L2n+i_2+" " �9 + Li  

m = 0  

and 

d L ,  [n/2-1] 
. . . .  y~ ( n - 2 m ) L , _ l _ a , , , = n L , _ l + ( n - 2 ) L , _ 3  + ' ' "  �9 
d x  r r l=0  

The polynomial L, is well known as the characteristic polynomial of the adjacency 
matrix for a linear chain of carbon atoms [1, 6]. Its recurrence relation demon- 
strates how the polynomial for a linear chain of n atoms is simply formed by 
addition of a single atom onto the end of a chain which is one bond length 
shorter. Noting that L~=x,  we see that L, is equal to the product of the 
polynomials of the two combining sections minus that of the residual fragment 
left after the two newly linking atoms are eliminated. More generally, Heilbronner 
has demonstrated an extension of the method to the piecewise connection of any 
two sections and to the closure of rings [2]. We will make use of this factorization 
method, and the reader is referred to Streitwieser for further details [6]. 
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We will now consider the Huckel MO treatment of m-xylene where the numbers 

1 

5 4 

1-8 are used for vertex identification and are not weights. The characteristic 
polynomial can be quickly derived using the factorization method [2, 6] to be 

L2[ L6- 3L4 + 3L2- 5]=O 

or~ 

X2[X6--8X4-~ 18x 2 -  12] = 0. 

The roots are found to be 

x = o, o, +(3 + ( 3 - , / 3 ) ' / t  +d2. 

To select a vertex about which to evaluate the eigenvectors we wish, if possible, 
to avoid selecting one which has a corresponding zero eigenvector coefficient for 
any of the eigenvalues, since in the case of a symmetric matrix all the cofactors 
will turn out to be identically zero. This problem may be unavoidable at times 
and more than one vertex would have to be used to generate the complete 
eigenvector matrix. In most cases the problem is avoided by selecting the vertex 
of lowest degree which is not coincident with a symmetry axis of the graph. For 
this reason vertex 1 has been selected for the calculation. 

Eigenvector coefficient C1, which is given by the characteristic polynomial of 
cof(a11), is first found by eliminating vertex 1 from the graph and evaluating the 
polynomial of the resulting subgraph: 

C I  = L 7 -  Ls- L3-2L1. 

Then, C2 is determined from a path of length one from vertex l to vertex 2 and 
the polynomial of the subgraph resulting from elimination of the two vertices: 

C 2  = L 6  - L2. 

There are two self-avoiding paths from vertex 1 to each of the remaining vertices 
3-8. The paths from vertex 1 to vertex 3 are (1-2-3) and (1-2-5-7-6-4-3) ,  lengths 
2 and 6, respectively. Then C3 is simply a linear combination of the two subgraph 
polynomials Ls-L1 and Ll: 

C3=L5. 
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Two paths may be traversed from vertex 1 to vertex 4, with resulting subgraph 
polynomials L4- 1 and L2 + 1 : 

C4 = L4 + L2. 

Finally, 

Cs= Ls + LI 

C6 = 2L3 + L1 

C7 = L4+2L2+ 1 

C8 = L3 + L l. 

The eigenvector coefficients for the nondegenerate eigenvalues may now be simply 
obtained by substitution. The coefficients will all be identically zero for the 
degenerate eigenvalues, however, as expected. These eigenvalues are thus roots 
of the eigenvector polynomials and, since the coefficients are only known to 
within a multiplicative constant, the degenerate roots could be factored from 
each of the coefficients. A less tedious procedure is to use l'Hospital's rule and 
take n -  1 derivatives of the coefficients for an n-tupie degeneracy, using the 
derivative expansion given earlier, and completing the degenerate eigenvector 
set through symmetry. The doubly degenerate eigenvectors are then given by 

- 7  L 6 - 3 L2 - 3 " 

6Ls+4L3 

5L4+ 3L2+ 1 

4L3+4LI 
C =  

5La+3L2+2 

6L2+3 

4L3+6LI 

3L2+2 

Since m-xylene contains a mirror symmetry plane the eigenvectors are in fact 
either symmetric or antisymmetric with respect to that plane. Heilbronner, 
McClelland, King, and Herndon and Ellzey [7] have shown the use of a graphical 
method for reducing a graph with symmetry elements to simpler subgraphs whose 
characteristic polynomials yield the roots corresponding to states of a particular 
irreducible representation. Each subgraph polynomial is a factor of the parent 
graph polynomial and is of lower, order, not only simplifying the calculations 
but also breaking the symmetry based degeneracies. The eigenvector method may 
then be applied to the subgraphs to simply determine the eigenveetors belonging 
to each representation. 
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4. Heteroatoms 

Consider  now the same structure with atom 8 being a heteroatom. The graph is 
given by 

1 1 1 1 

1 1 I 

h 

where h is the vertex weight and k is the edge weight for a tom 8. Or equivalently, 
a78 = a76 = k and a88 = h. The characteristic polynomial  may be factorized symboli- 
cally as 

where the structures are to be replaced by their characteristic polynomials .  The 
characterist ic equat ion then becomes 

L,(L1 - h)(L6 - 2L4+ L2 - 3) - k2L~(r4 - 2L2 + 2) = 0. 

For  h = 0 and k = 1 this equat ion reverts to the expression found  earlier for the 
topological  matrix. Note  that in general the degeneracy has been broken by the 
appearance  o f  h r 0 and but  a single zero root  occurs. 

The inequivalence o f  atoms 1 and 8 poses an interesting question concerning the 
vertex to be used for the eigenvector calculation. While a tom 8 would  appear  to 
be an ideal selection in terms of  computa t ional  ease, we see that the eigenvectors 
would  be identical to the set previously calculated with the exception that seven 
of  the eight coefficients would  now be multiplied by k Since these vector were 
already shown to vanish for the zero root, and since the degeneracy no longer 
exists, we immediate ly  see that  the eigenvector coefficient for  a tom 8 must  vanish 
for  the zero root. Using vertex 1 again for the calculation we obtain 

- ( L 1  - h)(L6 - L 4 - -  2 )  - -  k2L,  " 

(L,  - h)L5 - k 2 ( L 4  + L2) 

( L , -  h)(L4 + 1) - k2( t3  + t , )  

(L~ - h ) (L4+ 1) - k2L3 
C =  

( L ~ -  h)(L3 + L~) - k2(L2 + 1) 

2(Lj - h ) L2 - k2 Ll 

(LI - h)(L3 + L,)  

k(  L3 + LI ) 

Indeed,  (?2 = C5 = (?7 = (78 = 0 for L1 = x = 0. 
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5. Conclusions 

It has been demonstrated from expansion of the characteristic matrix that the 
cofactors of any elements, and hence the eigenvectors, can be simply extracted 
from a graph. The eigenvector coefficients are expressed as polynomials, and 
root substitution yields their numerical values. The method is quite general and 
is amenable to any type of acyclic or cyclic system within the bounds of reasonable 
numbers of path tracings. However, path counting is unnecessary. The extension 
to heteroatom systems has been shown and the implications for simplifying the 
usual computational effort are significant. 

It is apparent also that applications to other problems with sparse matrices may 
be beneficial in terms of providing analytical expressions where numerical solu- 
tions are the normal course. This would be particularly useful where the solutions 
contain functions of the eigenvector matrix, such as its inverse. An object of a 
future report will be the demonstration of the method's applicability to problems 
in consecutive, reversible first-order reactions. 
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